G-protein-coupled receptors (GPCRs) are vital transmembrane proteins that regulate a wide range of physiological processes by transmitting extracellular signals into intracellular responses. Among them, the β2-adrenergic receptor (β2-AR) plays a central role in bronchodilation, smooth muscle relaxation, and cardiovascular modulation, making it a key therapeutic target for diseases such as asthma, chronic obstructive pulmonary disease (COPD), and hypertension. This study explores the potential of natural bioactive compounds like ephedrine, quercetin, catechin, and resveratrol as alternative ligands for β2-AR through molecular docking analysis. Using AutoDock 4.6, these compounds were docked with the binding site of the β2-AR (PDB ID: 2RH1), and their binding affinities and interaction map were evaluated. Results showed that all compounds exhibited favorable binding energies and stable interactions with key receptor residues, with quercetin demonstrating the highest affinity. The findings suggest that these natural compounds may serve as promising leads for the development of safer, plant-derived modulators of β2-AR, supporting the role of computational approaches in natural product-based drug discovery. However, as docking cannot determine functional activity, these findings should be interpreted as preliminary and require experimental validation.
Loading....